Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 281: 109922, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615807

RESUMO

While wastewater and paint particles discharged from the in-water cleaning process of ship hulls are consistently released into benthic ecosystems, their hazardous effects on non-target animals remain largely unclear. In this study, we provide evidence on acute harmful effects of hull cleaning wastewater in marine polychaete Perinereis aibuhitensis by analyzing physiological and biochemical parameters such as survival, burrowing activity, and oxidative status. Raw wastewater samples were collected during ship hull cleaning processes in the field. Two wastewater samples for the exposure experiment were prepared in the laboratory: 1) mechanically filtered in the in-water cleaning system (MF) and 2) additionally filtered with a 0.45 µm filter in the laboratory (LF). These wastewater samples contained high concentrations of metals (zinc and copper) and metal-based booster biocides (copper pyrithione and zinc pyrithione) compared to those analyzed in seawater. Polycheates were exposed to different concentrations of the two wastewater samples for 96 h. Higher mortality was observed in response to MF compared to LF-exposed polychaetes. Both wastewater samples dose-dependently decreased burrowing activity and AChE activity. Drastic oxidative stress was observed in response to the two wastewater samples. MDA levels were significantly increased by MF and LF samples. Significant GSH depletion was observed with MF exposure, while increased and decreased GSH contents were observed in LF-exposed polychaetes. Enzymatic activities of antioxidant components, catalase, superoxide dismutase, and glutathione S-transferase were significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater can have deleterious effects on the health status of polychaetes.

2.
J Hazard Mater ; 469: 133959, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457977

RESUMO

We conducted a comprehensive assessment involving acute effects on 96-hour survival and biochemical parameters, as well as chronic effects on growth and reproduction spanning three generations of the marine mysid Neomysis awatschensis exposed to filtered wastewater to evaluate the potential impact of ship hull-cleaning wastewater on crustaceans. The analyzed wastewater exhibited elevated concentrations of metals, specifically zinc (Zn) and copper (Cu) and metal-based antifoulants, i.e., Cu pyrithoine (CuPT) and Zn pyrithoine (ZnPT). The results revealed dose-dependent reductions in survival rates, accompanied by a notable increase in oxidative stress, in response to the sublethal values of two wastewater samples: 1) mechanically filtered using the cleaning system (MF) and 2) additionally filtered in the laboratory (LF) for 96 h. Mysids exposed to MF displayed higher mortality than those exposed to LF. Furthermore, mysids subjected to continuous exposure of 0.001% LF across three generations exhibited significant inhibition of the feeding rate, more pronounced growth retardation along with an extended intermolt duration, and a diminished rate of reproduction compared to the control. A noteworthy inhibition of the feeding rate and growth was observed in the first generation exposed only to the LF sample. However, although the reproduction rate was not significantly affected. Collectively, these findings underscore the potential harm posed by sublethal concentrations of wastewater to the health of mysid populations under consistent exposure.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Metais/farmacologia , Crustáceos , Cobre/toxicidade , Zinco
3.
Mar Pollut Bull ; 200: 116121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354590

RESUMO

While wastewater discharged from in-water cleaning process of ship hulls on rotifer consistently released into aquatic ecosystem, its detrimental effects on non-target animals are largely unclear. In this study, we provide evidence on detrimental effects of hull cleaning wastewater in the monogonont rotifer Brachionus manjavacas by analyzing biochemical and physiological parameters in its oxidative status, survival, lifespan, growth, fecundity, and population. The wastewater contained high concentrations of metals (Zn and Cu) and metal-based antifoulants (CuPT and ZnPT). Significant oxidative stress was observed in response to two wastewater samples [1) raw wastewater (RW) and 2) mechanical filtrated in the cleaning system (MF)]. Higher detrimental effects in survival, lifespan, fecundity, and population growth for 10 days were measured in the RW-exposed rotifers than those results analyzed in the MF-exposed rotifers. Two growth parameters, lorica length and width were also significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater would have deleterious effects on the maintenance of the rotifer population when they exposed constantly.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Águas Residuárias , Crescimento Demográfico , Ecossistema , Estágios do Ciclo de Vida , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
4.
J Hazard Mater ; 460: 132456, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708650

RESUMO

An increase in the use of ROVs for in-water hull cleaning (IWC) has led to the need to understand the risks to the marine environment posed by the release of IWC effluents. The primary objective of this research is to investigate the characteristics of wastewater generated during IWC, specifically concerning suspended solids (SS) and metal concentrations, and their release rates and total load to the environment. The IWC effluents contain substantial amounts of SS and metals, with Cu and Zn being the most prevalent. These metals are predominantly associated with fine antifouling paint particles, posing a potential risk of secondary pollution upon release into the marine environment. While the treatment systems demonstrated effectiveness in reducing SS and particulate metals, achieving complete removal of dissolved and particulate metals below ambient levels proved to be challenging. To mitigate environmental risks, this study proposes, based on the particle size analysis, the implementation of multistage filtration systems with an optimal filtration pore size for the effluent treatment. In conclusion, we highlight the potential environmental risks of IWC activities. As most metals have a strong affinity towards particles in wastewater, effective removal of particles is essential to alleviate environmental stress at IWC sites.

5.
Mar Pollut Bull ; 194(Pt B): 115273, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454603

RESUMO

Environmental spills of in-water hull cleaning wastewater (HCW) containing heavy metals and biocides is inevitable, and the effects of HCW on microalgae are unknown. To investigate this, we conducted microcosm experiments by adding HCW to natural seawater. HCW samples were obtained from two different cleaning methods (soft: sponge, hard: brush), and 5 % or 10 % were added to natural seawater as treatments. Dissolved Cu concentrations were 5 to 10 times higher in the treatments than those in the control. There were significant differences in growth of unattached microalgae depending on HCW dose (chlorophyll a: 34.1 ± 0.8 µg L-1 in control vs. 12.6 ± 4.3 µg L-1 in treatments). Conversely, the biomass of attached microalgae increased with HCW dose, which was associated with most of the nutrient reduction later in the experiment, rather than unattached microalgae. Our findings suggest that HCW can significantly impact microalgal community, especially depending on spill volume.


Assuntos
Microalgas , Águas Residuárias , Clorofila A , Água , Navios , Biomassa
6.
Mar Pollut Bull ; 191: 114991, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146552

RESUMO

Unmanaged disposal of wastewater produced by underwater hull cleaning equipment (WHCE) is suspected to induce toxic effects to marine organisms because wastewater contains several anti-fouling compounds. To investigate the effects of WHCE on marine copepod, we examined the toxicity on life parameters (e.g. mortality, development, and fecundity) and gene expression changes of Tigriopus japonicus as model organism. Significant mortality and developmental time changes were observed in response to wastewater. No significant differences in fecundity were observed. Transcriptional profiling with differentially expressed genes from WHCE exposed T. japonicus showed WHCE may induce genotoxicity associated genes and pathways. In addition, potentially neurotoxic effects were evident following exposure to WHCE. The findings suggest that wastewater released during hull cleaning should be managed to reduce physiological and molecular deleterious effects in marine organisms.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Fertilidade , Poluentes Químicos da Água/metabolismo
7.
Ecotoxicol Environ Saf ; 253: 114653, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812868

RESUMO

In-water cleaning (IWC) involves the removal of biofilms and foulants from the hull of a ship using brush or water jet. During IWC, several factors associated with the harmful chemical contaminants release to the marine environment, which can create "hotspots" of chemical contamination in coastal areas. To elucidate the potential toxic effects of IWC discharge, we investigated developmental toxicity in embryonic flounder, which are sensitive life stage to chemical exposure. Zinc and copper were the dominant metals, while zinc pyrithione was the most abundant biocide associated with IWC discharge in two remotely operated IWC. Discharge from IWC carried by both remotely operated vehicles (ROVs) produced developmental malformations including pericardial edema, spinal curvature, and tail-fin defects. In an analyses of differential gene expression profiles (fold-change of genes with a cutoff < 0.05) as assessed by high-throughput RNA sequencing, genes associated with muscle development were commonly and significantly changed. The gene ontology (GO) of embryos exposed to IWC discharge from ROV A activities highly enriched muscle and heart development, while cell signaling and transport were evident in embryos exposed to IWC discharge of ROV B. We analyzed the gene network by significant GO terms. In the network, TTN, MYOM1, CASP3, and CDH2 genes appeared to be key regulators of the toxic effects on muscle development. In embryos exposed to ROV B discharge, HSPG2, VEGFA, and TNF genes related to the nervous system pathway were affected. These results shed light on the potential impacts of muscle and nervous system development in non-target coastal organisms exposed to contaminants found in IWC discharge.


Assuntos
Procedimentos Cirúrgicos Robóticos , Poluentes Químicos da Água , Animais , Água/química , Peixes , Metais/farmacologia , Biofilmes , Poluentes Químicos da Água/análise , Embrião não Mamífero
8.
J Hazard Mater ; 438: 129417, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779397

RESUMO

Tire-wear particles (TWPs) are potential source of microplastic (MP) pollution in marine environments. Although the hazardous effects of MPs on marine biota have received considerable attention, the toxicity of TWPs and associated leachates remain poorly understood. Here, to assess the toxicity of TWP leachate and the underlying mechanisms of toxicity, the phenotypic and transcriptomic responses of the rotifer Brachionus plicatilis were assessed with chemistry analysis of a TWP leachate. Although acute toxicity was induced, and a variety of metals and polyaromatic hydrocarbons were detected in the leachate, levels were below the threshold for acute toxicity. The results of particle analysis suggest that the acute toxicity observed in our study is the result of a toxic cocktail of micro- and/or nano-sized TWPs and other additives in TWP leachate. The adverse effects of TWP leachate were associated with differential expression of genes related to cellular processes, stress response, and impaired metabolism, with further oxidative stress responses. Our results imply that TWPs pose a greater threat to marine biota than other plastic particles as they constitute a major source of nano- and microplastics that have synergistic effects with the additives contained in TWP leachate.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Poluição Ambiental , Estresse Oxidativo , Plásticos , Rotíferos/genética , Transcriptoma , Poluentes Químicos da Água/toxicidade
9.
Ecotoxicol Environ Saf ; 233: 113337, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219958

RESUMO

A new generation of booster biocides that include metal pyrithiones (PTs) such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT) are being used as tributyltin alternatives. In the marine environment, ZnPT can easily transchelate Cu to form CuPT, and the environmental fate and persistence of these two metal pyrithiones are closely related. Although some data on the toxicity of biocides on marine fish are available, little is known about their toxicity and toxic pathway. We thus compared the toxic effects of CuPT and ZnPT on embryonic olive flounder (Paralichthys olivaceus) by investigating their adverse effects based on developmental morphogenesis and transcriptional variation. In our study, the toxic potency of CuPT was greater with respect to developmental malformation and mortality than ZnPT. Consistent with the developmental effects, the expression of genes related to tail fin malformation (including plod2, furin, and wnt3a) was higher in embryonic flounder exposed to CuPT than in those exposed to ZnPT. Genes related to muscle and nervous system development exhibited significant changes on differential gene expression profiles using RNA sequencing (cutoff value P < 0.05). Gene ontology analysis of embryos exposed to CuPT revealed affected cellular respiration and kidney development, whereas genes associated with cell development, nervous system development and heart development showed significant variation in embryonic flounder exposed to ZnPT. Overall, our study clarifies the common and unique developmental toxic effects of CuPT and ZnPT through transcriptomic analyses in embryonic flounder.


Assuntos
Desinfetantes , Linguado , Poluentes Químicos da Água , Animais , Desinfetantes/toxicidade , Linguado/genética , Compostos Organometálicos , Piridinas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Sci Total Environ ; 807(Pt 3): 151781, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34801494

RESUMO

The central-eastern Yellow Sea is an important region for transporting organic matter (OM) to the Pacific Ocean, however, there is limited information available regarding the characteristics and sources of OM in this area. The present study investigated the concentrations and stable isotopic compositions of carbon (δ13C) and nitrogen (δ15N) for particulate matter and sediment in the central-eastern Yellow Sea during April 2019. The physicochemical properties (i.e., salinity, temperature, fluorescence, and nutrients), size-fractionated phytoplankton biomass (Chl-a), and concentration and fluorescence characteristics of dissolved organic matter (DOM) were also determined. The satellite SST and Chl-a data indicated that mixing cold and warm water masses were observed. Phytoplankton blooms occurred a few days before our sampling campaign. Considering the high concentration of suspended solids in the bottom layer, resuspended sediment caused by tidal currents could be a major source of OM in coastal areas. The δ13C values of particulate organic matter (POM) in the coastal area were higher (-23 to -22‰) than those of OM from terrestrial sources (approximately -28 to -27‰). Instead, the lowest δ13C values were observed in the central part of our study area, where the relative abundance of picophytoplankton was high. These results indicated that phytoplankton-derived OM after phytoplankton spring blooms in the coastal area could be the primary source of OM rather than terrestrial origins. In addition, the source of OM that presented low δ13C values could be picophytoplankton-derived OM. The characteristics of DOM were related to biological processes (mediated by phytoplankton and bacteria) and resuspension of sedimentary organic matter. We did not detect an influx of large amounts of terrestrial OM in coastal sediments. Overall, the source and characteristics of OM appeared to be influenced by the hydrodynamics and the distribution properties of lower trophic-level organisms in the central-eastern Yellow Sea during the spring season.


Assuntos
Hidrodinâmica , Fitoplâncton , Matéria Orgânica Dissolvida , Oceano Pacífico
11.
Aquat Toxicol ; 238: 105883, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34311228

RESUMO

Aquatic sediments act as a storage for diverse mixtures of organic and inorganic contaminants. Nevertheless, most evaluations of contaminated sediments have been limited to the assessment of concentrations of target compounds and lethal effects on some test species. To identify the organic contaminants causing sub-lethal effects of contaminated sediment, this study combined chemical and biological (non)target analysis involving comprehensive two-dimensional gas chromatography coupled with a time-of-flight Mass Spectrometer (GCxGC/ToF-MS) analysis, embryonic malformation and high-throughput sequencing (RNA-seq) analysis on developing flounder. Polycyclic aromatic hydrocarbons were more abundant in the sediment extract of Yeongil Bay (SEY), while Jinhae Bay (SEJ) was contaminated with a large amount of unidentified chemicals. The unidentified chemicals of SEJ included branched alkanes, oxygenated cycloalkanes, heterogeneous hydrocarbons, and other unknown compounds. Percentage of pericardial edema was the highest in embryonic flounder exposed to SEY. Consistent with the morphogenesis results, the expression level of genes related to heart formation including the nkx2.5 and robo1 was greater in embryonic flounder exposed to SEY. In the analyses of differential gene expression profiles (cutoff P < 0.05), by RNA-seq, embryos exposed to SEJ showed changes related to cell differentiation, cell part morphogenesis, neurogenesis, and neuron development. Genes related to neurogenesis and positive regulation of molecular functions variated significantly in embryos exposed to SEY. These results demonstrated the advantages of combining target and non-target analysis to accurately evaluate the major chemical groups causing sediment toxicity. Therefore, this work provided a useful approach to tracking and revealing the causes of toxic effects and identifying potential toxic mechanisms.

12.
Mar Pollut Bull ; 171: 112694, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34242954

RESUMO

In-water cleaning can clear-off foulants from ship hulls to prevent transportation of non-indigenous species and reduce hull friction and consequent fuel use. However, during cleaning, antifouling paint residues containing toxic substances can be released into the environment. To understand the potential risks of in-water hull cleaning, cleaning effluents were collected and analyzed for total suspended solid (TSS), particle size distribution, and metal concentrations. TSS concentrations were 97.3-249 mg/L, corresponding to release rates of 12.9-37.5 g/m2 from the hull surface. Particles with sizes of ≥8 µm contributed 75-94% of the TSS. Average Cu and Zn concentrations in the effluents were 209 µg/L and 1510 µg/L, respectively, which were used for risk assessment in two port scenarios. Although the risks vary with the scale of the hull cleaning and the ports, in-water cleaning poses clear risks to marine environments, unless the effluents are recovered or treated before being released.


Assuntos
Navios , Poluentes Químicos da Água , Metais , Pintura , Água do Mar , Água , Poluentes Químicos da Água/análise
13.
J Hazard Mater ; 416: 125703, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836325

RESUMO

Sorption of organic pollutants on microplastics can be an alternative uptake route for organic pollutants in aquatic organisms. To assess the combined effects of microplastics and organic pollutants, we employed phenotypic and transcriptomic analyses to the responses of the marine rotifer Brachionus koreanus to environmentally relevant concentrations of nano-sized microplastic (0.05 µm), water-accommodated fractions of crude oil, and binary mixtures thereof. Our multigenerational in vivo experiments revealed more than additive effects on population growth of B. koreanus in response to combined exposure, while a single exposure to nano-sized microplastic did not induce observable adverse effects. Synergistic transcriptome deregulation was consistently associated with dramatically higher numbers of differentially expressed genes, and increased gene expression was associated with combined exposure. The majority of synergistic transcriptional alteration was related to metabolism and transcription, with impaired reproduction resulting from energetic reallocation toward adaptation. As further supported by chemistry analysis for polycyclic aromatic hydrocarbons sorption on microplastic, our findings imply that nano-sized microplastics can synergistically mediate the effects of organic pollutants in aquatic organisms.


Assuntos
Petróleo , Rotíferos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Rotíferos/genética , Transcriptoma , Água , Poluentes Químicos da Água/toxicidade
14.
J Hazard Mater ; 403: 123708, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264892

RESUMO

Hydroblasting is used to remove biofouling and exhausted antifouling paints from ship hulls. Effluents generated from this process contain paint particles, metals, and booster biocides that may have toxic effects on organisms. To understand the potential risks of effluent discharge on marine environments, we analyzed the concentrations of metals in effluents collected during the dry-dock cleaning of ship hulls by hydroblasting. Copper and zinc were the principal metals, with concentrations ranging from 1440 to 9110 µg/L and 1800 to 22,600 µg/L, respectively. These concentrations are sufficiently high to cause harmful effects to most marine organisms. Model predictions suggested that the effluent discharge from hydroblasting posed risks to the wider marine environment of a hull-cleaning site, depending on the scale of the hull-cleaning operations and the size of the receiving environment, as well as various hydrodynamic factors. These effluents are inevitably hazardous, and their environmental release should be managed and regulated on the basis of site-specific risk assessments.

15.
Environ Sci Technol ; 54(23): 15170-15179, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197181

RESUMO

Flounders have been widely used as indicator species for monitoring the benthic environment of marine coastal regions owing to their habitat and feeding preferences in or on sandy sediments. Here, a single-step, sensitive, specific, and simple luciferase assay was developed, using the olive flounder cyp1a1 gene, for effective detection of CYP1A-inducing contaminants in coastal sediments. The developed cyp1a1-luciferase assay was highly sensitive to the widely used CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene (B[a]P), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In the case of TCDD, significant dose-dependent increases in luciferase activity (0.3-300 ng/L) were detected. The assay was more sensitive to PCB 126 than to B[a]P. The assay also involved the highly sensitive expression of luciferase to extracted mixtures of PCBs and polycyclic aromatic hydrocarbons (PAHs) collected from coastal sediments. PCBs were more capable of cyp1a1 induction in the assay system at small doses than PAHs in environmental samples. Using the cyp1a1-luciferase assay along with water or sediment chemistry will certainly aid in diagnosing CYP1A-inducing contaminants in coastal environments.


Assuntos
Linguado , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Citocromo P-450 CYP1A1/genética , Luciferases/genética
16.
Aquat Toxicol ; 227: 105615, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932041

RESUMO

Chemical contaminants can be discharged by vessel hull cleaning processes, such as scraping, jet spraying, and painting, all of which produce readily transportable contaminants into the marine environment, where they are referred to as 'hotspots' of contamination in coastal areas. However, many countries have not yet established effective evaluation methods for disposal of waste mixtures or management guidelines for areas of hull cleaning. To define the toxic effects of wastewater from vessel hull cleaning in dry docks on resident non-target organisms, we investigated the chemical concentrations and developmental toxicity on embryonic flounder, which is an organism sensitive to chemical contamination. In this study, the dominant inorganic metal discharged was zinc when cleaning Ship A (300 tons) and copper for Ship B (5,000 tons). The wastewater from high-pressure water blasting (WHPB) of Ship A (300 tons) and Ship B (5,000 tons) produced a largely overlapping suite of developmental malformations including pericardial edema, spinal curvature, and tail fin defects. Forty-eight hours after exposure, the frequency percentage of malformation began to increase in embryos exposed to a 500-fold dilution of WHPB from Ships A and B. We performed transcriptome sequencing to characterize the toxicological developmental effects of WHPB exposure at the molecular level. The results of the analysis revealed significantly altered expression of genes associated with muscle cell differentiation, actin-mediated cell contraction, and nervous system development (cutoff P < 0.01) in embryonic flounder exposed to high-pressure cleaning effluent from Ship A. Genes associated with chromatin remodeling, cell cycling, and insulin receptor signaling pathways were significantly altered in embryonic flounder exposed to WHPB of Ship B (cutoff P < 0.01). These findings provide a greater understanding of the developmental toxicity and potential effects of WHPB effluent on coastal embryonic fish. Furthermore, our results could inform WHPB effluent management practices to reduce impacts on non-target coastal organisms.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica , Peixes , Linguado , Metais , Navios , Águas Residuárias/química
17.
Environ Int ; 136: 105438, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31884413

RESUMO

The 2007 Hebei Spirit oil spill (HSOS), the largest in the national history, has negatively impacted the entire environment and ecosystem along the west coast of South Korea. Although many studies have reported the damages and impacts from the HSOS, quantitative assessment evaluating the recovery time and status have not been documented. Here, we first address the recovery timeline of the HSOS, by comprehensive analyses of 10-years accumulated data in quantitative manner. Concentrations of residual oils in seawater, sediments, and oysters rapidly dropped to backgrounds in 16, 75, and 33 months, respectively. Also, damaged benthic communities of intertidal and subtidal areas were fully recovered only after ~6 years. The present results collectively indicated unexpectedly fast recovery of the damaged environment and ecosystem from such a huge oil spill. The high tidal mixing (~9 m tidal height) and intensive human cleanup (~1.2 million volunteers) at the initial cleanup period might have contributed to rapid recovery; cf. 4-5 times faster than the Exxon Valdez oil spill. However, potential risk to human health remains unclear. Thus, it is warranted to conduct more in depth epidemiological studies to address chronic health effects associated with the cleanup volunteers as well as the local residents who have been living nearby the oil spill impacted sites.


Assuntos
Ecossistema , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , República da Coreia , Água do Mar
18.
Environ Sci Technol ; 53(13): 7830-7839, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244070

RESUMO

To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 µg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 µg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 µg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 µg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals.


Assuntos
Rotíferos , Compostos de Trialquitina , Animais , Metabolismo dos Lipídeos , Receptores X de Retinoides
19.
Ecotoxicol Environ Saf ; 180: 23-32, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31059904

RESUMO

The use of alternative biocides has increased due to their economic and ecological relevance. Although data regarding the toxicity of commercial alternative biocides in marine organisms are accumulating, little is known about their toxic pathways or mechanisms. To compare the toxic effects of commercial alternative biocides on non-target pelagic fish (flounder) embryos, we investigated the adverse effects of developmental malformation and transcriptional changes. Three biocides including Diuron, Irgarol 1051® and Sea-Nine 211® produced a largely overlapping suite of developmental malformations, including tail-fin fold defects and dorsal body axis curvature. In our test, the potencies of these biocides were ranked in the following order with respect to malformation and mortalities: Sea-Nine 211®â€¯> Irgarol 1051®â€¯> Diuron. Consistent with the toxicity rankings, the expression of genes related to heart formation was greater in embryonic flounder exposed to Sea-Nine 211® than in those exposed to Irgarol 1051® or Diuron, while expression of genes related to fin malformation was greater in the Irgarol 1051® exposure group. In analyses of differential gene expression (DEG) profiles (fold change of genes with a cutoff P < 0.05) by high-throughput sequencing (RNA-seq), genes associated with nervous system development, transmembrane transport activity, and muscle cell development were significantly changed commonly. Embryos exposed to Diuron showed changes related to cellular protein localization, whereas genes associated with immune system processes were up-regulated significantly in embryos exposed to Irgarol 1051®. Genes related to actin filament organization and embryonic morphogenesis were up-regulated in embryos exposed to Sea-Nine 211®. Overall, our study provides a better understanding of the overlapping and unique developmental toxic effects of three commercial booster biocides through transcriptomic analyses in a non-target species, embryonic flounder.


Assuntos
Desinfetantes/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Peixes/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica/prevenção & controle , Diurona/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Tiazóis/toxicidade , Triazinas/toxicidade
20.
Aquat Toxicol ; 205: 165-173, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30391725

RESUMO

Sea-Nine (4,5-dichloro-2-n-octyl-4-isothiazoline3-one; DCOIT) antifoulant has been widely used owing to its broad spectrum of biocide activity against major fouling organisms. In this study, several physiological parameters of a marine mysid were analyzed upon exposure to sublethal environmental concentrations (1 and 100 ng L-1) of Sea-Nine in two exposure conditions, intermittent (weekly; once per week) and constant (daily; once per 24 h) exposure, for 4 weeks. In both experimental conditions, growth retardation, acetylcholinesterase (AChE) activity, glutathione S-transferase (GST) activity, and number of newborn juveniles as second generation, together with their survival were measured. Morphometric parameters of total body, antennal scale, exopod, endopod, and telson were significantly retarded by 22%, 14%, 13%, and 24%, respectively, by daily exposure to 100 ng L-1 Sea-Nine for 4 weeks. Significant inhibition of AChE activity was observed at week 4 in the 100 ng L-1 daily Sea-Nine-exposed groups, whereas no significant GST activity was measured at the same experimental conditions. Inhibition of AChE activity would be associated with impairment of cholinergic system and may adversely modulate growth parameters of the mysid. The number of newly hatched juveniles from females that were exposed daily to 100 ng L-1 Sea-Nine was significantly lower than that of the control. Although no significant differences were observed between survival percentages of newborn juveniles for 30 days, mortality (NOEC and LC50) increased in the surviving offspring from the 100 ng L-1-exposed 1st generation of mysids. These findings suggested that constant exposure to Sea-Nine has detrimental effects on the growth parameters of marine mysids with inhibition of AChE activity.


Assuntos
Acetilcolinesterase/metabolismo , Crustáceos/efeitos dos fármacos , Crustáceos/enzimologia , Desinfetantes/toxicidade , Exposição Ambiental , Animais , Tamanho Corporal/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Crescimento/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA